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Abstract

Diffusion models for single image novel view synthesis
(NVS) can generate highly realistic and plausible images,
but they are limited in the geometric consistency to the given
relative poses. The generated images often show significant
errors with respect to the epipolar constraints that should
be fulfilled, as given by the target pose. In this paper we
address this issue by proposing a methodology to improve
the geometric correctness of images generated by a diffu-
sion model for single image NVS. We formulate a loss func-
tion based on image matching and epipolar constraints, and
optimize the starting noise in a diffusion sampling process
such that the generated image should both be a realistic im-
age and fulfill geometric constraints derived from the given
target pose. Our method does not require training data or
fine-tuning of the diffusion models, and we show that we can
apply it to multiple state-of-the-art models for single image
NVS. The method is evaluated on the MegaScenes dataset
and we show that geometric consistency is improved com-
pared to the baseline models while retaining the quality of
the generated images.

1. Introduction

Given a single or multiple views of a scene, novel view
synthesis (NVS) is the task of generating a new image of
the scene from another viewpoint. If we are given multiple
views that densely cover the full scene, this is largely a re-
construction and interpolation problem, with NeRF [15] and
Gaussian Splatting [9] being two successful approaches.
However, given just a single image of a scene the problem
is about generating a plausible image from the new view-
point and there can be multiple different images that are
realistic images of the scene from the new viewpoint since
large parts of the generated image might not be visible in
the given reference image. For this reason the single image
version of the novel view synthesis problem is typically ap-
proached with generative methods, and especially diffusion

Reference image After refinementZeroNVS

Figure 1. The single image novel view synthesis task is to, given a
reference image and a relative pose, generate an image of the scene
from the target pose. The estimated pose for an image generated
by the diffusion based method ZeroNVS is shown in red and our
refined estimate is depicted in green. The reference pose is shown
in blue and the target pose in black. As can be seen, the estimated
relative poses from the image generated by the diffusion model
can differ significantly from the target pose. Our method refines
such images to better align with the target pose.

models have achieved promising results on the task. Current
state-of-the-art methods for single image novel view syn-
thesis typically fine-tune pre-trained diffusion models on
large scale datasets while changing the architecture to add
the reference image and relative pose as conditioning. The
pioneering work Zero-1-to-3 [13] refined a pre-trained text-
conditioned image diffusion model [18] for single image
novel view synthesis. This was done by changing the con-
ditioning from text to pose and refining the model on a large
scale dataset with 3D objects [2]. However, it was limited
to single objects and inward facing poses on a sphere. Later,
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Figure 2. Our method for geometric consistency refinement (GC-Ref) modifies images such that corresponding points in the reference
image and the generated image lie close to their corresponding epipolar lines. We show an example of a reference image with a warping
to the target pose, obtained via monocular depth estimation, that the generated image should align with. If we consider matching points
between the reference images and the generated images we see that after our refinement the points lie closer to their epipolar lines. This is
also shown in the histograms where we show the distributions of the distances between matching points and their corresponding epipolar
lines before and after our refinement.

this was extended to general scenes and non-restricted rel-
ative poses by ZeroNVS [21]. This was further scaled up
by the introduction of the MegaScenes dataset [24] where
a diffusion model was trained with the larger dataset, and
the model architecture was also improved by adding pose
conditioning via warping of the reference view to the target
pose via monocular depth estimation [30].

While these approaches are mostly capable of generat-
ing realistic and plausible images, the images do not always
adhere to the target poses, as seen in Fig. 1 where we show
a generated image along with the target pose used as condi-
tioning and with the relative pose estimated from the gen-
erated images. We see that the estimated poses can deviate
from the target pose that the diffusion model is conditioned
on. We hypothesize that this is due to the indirect encoding
of the target pose to the diffusion models. In Zero-1-to-3
[13] and ZeroNVS [21] the relative pose, either given via
spherical coordinates or the pose matrix, is flattened and
concatenated with the CLIP embedding [17] of the refer-
ence image, which is then used in the cross-attention lay-
ers of the diffusion model. In MegaScenes [24] the pose
conditioning is extended to also include a warping of the
reference view to the target pose via estimated monocular
depth. While this increases the geometric preciseness, it

can still be observed from generated images that they are
not precisely seen from the correct relative pose, and can
still deviate from the warping. It is also worth noting that
the warping is resized by 1/8th to the dimensions of the
latent space of the diffusion model, which removes fine de-
tails and obscures their precise location in the image.

The main idea for our proposed method is to modify the
generated image such that corresponding points between
the reference image and the generated image better fulfill
epipolar constraints. In existing single image NVS methods
there is typically a large displacement between the matching
points and the corresponding epipolar lines, and our pro-
posed method can modify the generated images such that
the epipolar distances are reduced, as can be seen in Fig. 2.

Our proposed method uses pre-trained diffusion models,
but changes the sampling procedure to simultaneously min-
imize a geometric consistency loss based on epipolar ge-
ometry. See Fig. 3. We generate a first candidate image
by sampling random noise and denoising it with a diffu-
sion model. We then compute matching points between the
reference image and the generated image and define a loss
function based on the distances between matching points
and their corresponding epipolar lines. The initial noise
of the diffusion process is optimized to decrease this loss,



and as a result the generated image will better adhere to the
epipolar geometry. Our method is used only at the gener-
ation stage, and the diffusion model does not require any
further training. In summary, our contributions are:
• We introduce a training-free methodology that improves

the geometric consistency of images generated by diffu-
sion models for single image novel view synthesis.

• We test our method on the MegaScenes dataset, and show
that we can improve the geometric correctness of several
state-of-the-art models for single image NVS.

2. Related Work
In this section we review work on single image novel view
synthesis and various approaches for 3D consistent novel
view synthesis. We also present different approaches for
diffusion model guidance.

2.1. View Conditioned Diffusion Models
For NVS using diffusion models it is common to start with
a foundation model [18] for image generation and fine-
tune it for the NVS task by adding suitable conditioning
in the form of some pose encoding or warping via monoc-
ular depth. Zero-1-to-3 [13] first trained a NVS diffusion
model on a large-scale dataset [2] of synthetic 3d objects.
3DiM [26] similarly added pose-conditioning to a diffusion
model and proposed sampling strategies to generate mul-
tiple consistent views. ZeroNVS [21] refined Zero-1-to-
3 using a mixture of datasets containing images from real
scenes, and it was not restricted to poses on a sphere around
a single object, instead being able to handle arbitrary cam-
era transformations. MegaScenes [24] trained a diffusion
model similar to ZeroNVS but with additional training on
the larger MegaScenes dataset and with extra conditioning
using warpings based on estimated monocular depth of the
reference view. For these models the main improvements
come from additional fine-tuning on large scale datasets,
while we instead investigate improvements that do not re-
quire additional training, and instead explicitly optimize for
geometric consistency at test-time.

2.2. Improving 3D Consistency
There exists earlier work on improving the geometric con-
sistency for view-conditioned diffusion models by adding
additional layers that should encourage consistency [27, 29,
33, 38]. These allow for improved 3D consistency by in-
cluding multi-view and epipolar guidance in the diffusion
sampling process, but require additional significant fine-
tuning. These methods are only trained on datasets contain-
ing single objects, and would require additional fine-tuning
to be able to use on general scenes. In contrast our method
can be used directly to improve performance on general
scenes without requiring additional training. Another ap-
proach is [31] which is an auto-regressive method that uti-

lizes previously generated views as context when generat-
ing a sequence of new views. This method does not require
additional fine-tuning and improves multiview consistency
for a generated sequence, however it does not address the
issue of the geometric consistency of a single generated
view. Our method instead focuses on ensuring that gen-
erated images are geometrically aligned with the provided
target pose.

2.3. 3D Generation
An orthogonal approach to directly generating novel views
via a diffusion model is to use a 3D model, such as a NeRF
[15], as an intermediate representation. This is commonly
done with Score Distillation Sampling (SDS) as introduced
in DreamFusion [16] where SDS is used as a loss function to
train a NeRF model such that renderings are similar to sam-
ples from the diffusion model. Renderings from 3D mod-
els trained with SDS are by design geometrically correct,
however there are often artifacts such that the backgrounds
have a uniform color and no details, and that the images are
oversaturated. Another issue is that creating the 3D model
requires significant compute, typically in the order of hours
for a single scene. DreamFusion considered only text-to-
3D generation, but this has since been extended to single
image novel view synthesis [12, 14, 28, 34]. A different
approach is to train a large reconstruction model [7] that di-
rectly predicts a 3D model of an object from a single input
image, however the models can not handle general scenes.
Our focus is on improving geometric consistency of view
conditioned diffusion models capable of handling general
scenes without requiring additional training.

2.4. Guidance for Diffusion Models
To adapt a diffusion model for a specific task there are in
general two approaches, either to fine-tune the diffusion
model or to modify the sampling process. Fine-tuning is
commonly done using e.g. LoRa [8] or ControlNet [36]
which requires ample training data and compute for train-
ing. The other approach is to guide the diffusion sampling
process to steer it in a desired direction. Instead of training
data this typically requires some loss function or criteria that
should be minimized by the generated images. In Classifier
guidance [3] a correction is added to the noise prediction
by a diffusion model to steer the sample in the direction of
the negative gradient of a loss function. The loss function
can e.g. be an image classifier or segmentation model. In
a similar manner there exists training-free guidance meth-
ods [1, 32, 35] that add corrections using a one-step pre-
diction of the clean image from the current noisy sample
to compute the guidance. Another approach is to optimize
the initial noise for the diffusion process [19, 20], where the
initial noise is optimized such that the generated images are
semantically similar to a set of reference images.
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Figure 3. Our method for geometric consistency refinement aims to iteratively refine an image x0 generated by diffusion model ϵθ for
single image view synthesis to better fulfill geometric constraints. Our method is based on the fact that if the images are geometrically
consistent given the target pose then all matching points between the reference image Iref and the generated image x0 should lie on the
corresponding epipolar lines. We explicitly optimize this criteria by computing matching points between the reference image and generated
image via a differentiable matcher and then use the epipolar distances as a loss function L to optimize the starting noise zT of the diffusion
process using the gradient ∇zT L.

3. Methodology

In this section we present our geometric consistency loss
followed by a description of how we use this loss in the
diffusion sampling process to generate more geometrically
consistent images.

3.1. Geometric Consistency Loss

Our goal is to generate an image that precisely matches the
relative pose given as input, and we will here present the
loss function used to achieve this. Our main criteria for
measuring geometric consistency are the epipolar distances,
using the fact that matching points should lie on their corre-
sponding epipolar lines. We will use a differentiable match-
ing method to obtain dense matches between the reference
image and the currently generated image and optimize the
image to get lower distances to epipolar lines. An overview
is shown in Fig. 3.

We obtain multiple matches M = {(xi, yi)}Ni=1 where
xi is in the reference image and yi in the generated image
using the RoMa matcher [5], from which we obtain a dense
set of matches, along with confidence scores which are used
to remove uncertain matches. We define the geometric con-
sistency loss as the average distance of matches (xi, yi) to
their corresponding epipolar lines Fxi and FT yi where F is
the fundamental matrix obtained from the target pose. The
full loss L is defined as

L =
1

N

N∑
i=1

(
ρ
(
d(yi, Fxi) + d(xi, F

T yi)
)
+ (1)

λrgb∥Iref (xi)− Igen(yi)∥1)

where Iref is the reference image, Igen is the current gen-
erated image and ρ is a robust Huber loss with a threshold
of 2 pixels. The first term enforces matching points to lie
close to their corresponding epipolar lines and the second
term is a photo-consistency RGB loss enforcing matching
points to have similar colors, and this loss term is weighted
by a constant λrgb.

We filter the matches used in the computation of the loss
L based on their confidence scores, and use fix positions
of the matches in the reference image throughout the op-
timization. Given the starting noise zT we obtain the ini-
tial generated image I0gen from which we compute matches
M = {(xi, yi)}Ni=1 where xi is in the reference image Iref
and yi is in I0gen. For the loss L we use all matches with con-
fidence scores above a threshold, which is a hyperparameter
we select. During the optimization process at iteration t we
recompute the matches between Iref and the current gen-
erated image Itgen, and we use the matches {(xi, ỹi)}Ni=1

where xi is kept from the initial match filtration and ỹi is its
current match in Itgen. We compare several alternative ways
of filtering the matches in Sec. 4.3.

3.2. Image Generation
We use diffusion models pre-trained for single image novel
view synthesis, and our method refines the generated im-
ages to better align with the geometry specified by the rel-
ative pose, as measured by the loss described in the previ-
ous section. To refine the generated images we use an ap-
proach inspired by SeedSelect [19, 20], as shown in Fig. 3.
We use deterministic diffusion model sampling with DDIM
[23], and optimize the starting noise. If the starting noise
is zT , we run the diffusion model for T = 50 steps to get



↓ Rdist ↓ Tdist ↑ Masked
PSNR ↑ Masked

SSIM ↓Masked
LPIPS ↓Masked

FID
MegaScenes 3.70 11.30 16.97 0.595 0.213 72.97
MegaScenes + GC-Ref 2.88 7.94 18.13 0.631 0.199 68.48
ZeroNVS-MS 7.04 31.95 14.15 0.512 0.303 92.27
ZeroNVS-MS + GC-Ref 5.73 20.82 14.82 0.536 0.276 85.53

Table 1. Main results of our geometric consistency refinement (GC-Ref). We see that for both MegaScenes and ZeroNVS the images
better align with the target poses after our refinement, as shown by the rotation and translation errors Rdist and Tdist decreasing. For the
reconstruction metrics we also see a similar trend, namely that with our refinement the images are closer to the warping of the reference
images, indicating improvements in both geometric preciseness and image quality.
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Figure 4. Given the reference image and generated image we es-
timate the relative poses and compare it with the target poses. We
show how the pose errors vary with the magnitude of the rotation
of the target pose. The rotation errors increase the more the target
pose is rotated from the reference pose, while the translation er-
rors are largest for small camera motions. For both measures we
see that with our geometric consistency refinement (GC-Ref) the
errors are reduced compared to the baseline methods.

zT−1, . . . , z0, in each step evaluating the diffusion model
ϵθ(zt; t, Iref , c), where c contains conditioning regarding
target pose. The latent z0 is then decoded to the image space
x0, and the geometric matching loss L is computed using
the clean image x0 and the given reference image Iref . The
starting noise zT is optimized using the gradient ∇zTL. We
use 35 iterations to refine zT , with the Adam optimizer [10]
and the learning rate 0.025.

4. Experiments
In this section we present experiments using our training-
free methodology for improved geometric consistency for
single image NVS.

4.1. Setup
Dataset. We evaluate our method on the MegaScenes
dataset [24]. The target pose is normalized in the same
convention as for Megascenes. The estimated monocular

depth is aligned with the COLMAP reconstructions [22]
and normalized such that the 20th percentile of the depth of
the reference has unit length. We follow MegaScenes [24]
and compute monocular depth of the reference views with
DepthAnythingV2 [30], and create a mesh by unprojecting
the depth and creating mesh faces from neighbouring pix-
els. Surfaces in the mesh are removed if the angle between
the surface normal and the direction to the center of the ref-
erence camera is above a certain threshold, which we set to
70◦. The images in the MegaScenes dataset come from In-
ternet photo collections and cover a wide variation of scenes
(plazas, buildings, interiors and natural landmarks) captured
under varying conditions (differing lighting, weather and
camera intrinsics). We choose a subset of images capturing
some of these variations, while filtering out images where
failed monocular depth estimation leads to incorrect warp-
ings. This resulted in 46 images from the validation set, that
are used for hyperparameter tuning and the ablation study,
and 113 images from the test set, which are used for the
final evaluation. We evaluate our method using 14 target
poses generated using spherical coordinates, changing rel-
ative angles of the target pose with azimuth and elevation
angles respectively in the range [5◦, 10◦, . . . , 35◦]. Leading
to a total of 644 images for validation and 1582 images for
testing.

Metrics. Following MegaScenes[24] we report masked
reconstruction metrics and generative metrics evaluated
only on the pixels that are covered by the warped refer-
ence view. For reconstruction metrics we use PSNR and
SSIM [25] that measure similarity on pixel and patch ba-
sis and LPIPS [37] that measures perceptual similarity. We
also use FID [6] to evaluate the quality of generated images
by comparing their feature distribution to those of real im-
ages. We do not evaluate using ground truth pairs, but with
freely chosen poses, so we do not compute any metrics us-
ing ground truth target images. Additionally, to measure the
geometric correctness we evaluate the pose accuracy of the
generated images. Given the reference image and the gener-
ated image, we compute DeDoDe matches [4] followed by
using PoseLib [11] to estimate the relative pose. Note that



↓ Rdist ↓ Tdist ↑ Masked
PSNR ↑ Masked

SSIM ↓Masked
LPIPS ↓Masked

FID
Without Optimization 3.38 8.21 17.00 0.629 0.205 73.52

Match
Filtering

No Filtering 3.50 8.64 17.33 0.641 0.200 72.34

Fix
Matches

0.05 2.70 5.62 18.28 0.660 0.192 69.75
0.15 2.64 4.95 18.43 0.664 0.190 69.83
0.25 2.81 7.10 18.39 0.662 0.190 70.30

Adaptive
Matches

0.05 2.68 7.42 18.10 0.660 0.196 71.79
0.15 2.87 6.43 18.28 0.664 0.191 70.75
0.25 3.20 7.88 18.29 0.664 0.191 70.04

RGB
Loss λrgb

0 2.79 6.71 15.88 0.613 0.214 78.28
2.5 2.64 4.95 18.43 0.664 0.190 69.83
10 2.66 6.85 18.62 0.667 0.187 68.79

Table 2. Ablation studies for how to filter matches and how to select the confidence threshold for the points we use in the loss function of
our method, and also the results for different weights for the RGB loss. We found that the best performance was obtained by fixing the
matches from the first generated image and to only use matches where the confidence score was at least 0.15. Using either all matching
points regardless of their confidence or using a higher confidence threshold resulted in worse performance. Additionally, we found that
including the RGB loss gave significant improvements in image quality, while a too large value for λrgb negatively impacted the pose
accuracy, leading to a choice of λrgb = 2.5.
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Figure 5. Our refinement leads to reduced epipolar distances and to improved pose accuracy. We see in the histogram that the distances to
the epipolar lines decrease after our refinement and also in the 3D plot that the estimated camera pose (green) is closer to the target pose
(black) than the original generated image (red). In this specific case the translation error decreased from 2.8◦ to 0.8◦ and the rotation error
from 1.8◦ to 0.8◦.

we used the RoMa [5] matcher during our optimization, so
for fair comparison a different matcher is used to estimate
poses for evaluation. We then measure the average rota-
tion error Rdist and translation error Tdist of the estimated
poses (Ri

gen, T
i
gen) relative to the target poses (Ri

gt, T
i
gt) by

the relative angles obtained by

Rdist =
1

n

n∑
i=1

arccos

(
tr(Ri

genR
i⊤
gt )− 1

2

)
(2)

Tdist =
1

n

n∑
i=1

arccos

(
T i
gen · T i

gt∥∥T i
gen

∥∥∥∥T i
gt

∥∥
)

(3)

These two metrics capture how well the pose of the gener-
ated image match the desired target pose.

Implementation. We select matches using the RoMa
matcher [5] for the optimization. We test our methods using
the ZeroNVS [21] and MegaScenes [24] models for single
image NVS. We use the checkpoint of ZeroNVS that is fine-
tuned on MegaScenes, as in [24]. We use an A40 GPU and
the optimization takes 6 minutes per image.

4.2. Main Results
Our main results are shown in Table 1. Our overall goal is to
generate more geometrically consistent images, and we can
see that our method decreases the error of the estimated rel-
ative poses, which indicates that the generated images are
closer to the target pose than the images generated by the
baseline methods. We also see that the generated images
are more similar to the warpings than the baseline meth-



Reference Warping ZeroNVS ZeroNVS+GC-Ref MegaScenes MegaScenes+GC-Ref

Figure 6. We show several qualitative examples of images before and after our geometric consistency refinement (GC-Ref). For images
generated with ZeroNVS there is not explicit conditioning on the warping and we often see misalignment and incorrect scale, something
that can be fixed by our method. The MegaScenes model conditions explicitly on the warping and it generally aligns well with the warping.
However, sometimes there are errors such as incorrect lighting or hallucinated objects, which our method sometimes can resolve due to
using dense matches to change large parts of the image.

ods are, although this is partially due to the inclusion of the
photo-consistency RGB loss term as shown in the ablations
in Sec. 4.3. Finally we see that the FID metric is improved
which indicates that the generated images have more simi-
lar semantics and structure to the reference images than the
baselines.

In Fig. 4 we show how the errors of the estimated ro-
tations and translations depend on the relative angle of the
target pose. For the rotation we see that our method obtains
lower error than the baseline methods, and that the error in-
creases with the rotation angle of the target pose. As for the
translation we see that the error is largest for small camera
motions.

We show multiple qualitative results in Fig. 6. For Ze-
roNVS, we note that the generated images often exhibit in-
correct scale and do not depict the scene from the correct
pose. In these cases our method can correct the generated
images so that they are better aligned with the target pose

and the scale is closer to that of the warping. This is similar
to the example in Fig. 2. The MegaScenes model is condi-
tioned on the warping so we do not see as drastic changes,
but since we use dense matches to modify the images we
sometimes observe that the images after the refinement look
more similar to the reference images in terms of lighting and
image content.

In Fig. 7 we show the distributions of distances of
matches to their corresponding epipolar lines. We see that
while the images look similar the matching points are sig-
nificantly closer to the corresponding epipolar lines after
our refinement showing that the images better align with the
target pose. Another example is shown in Fig. 5 where we
also show the estimated camera poses in 3D. The estimated
camera pose is closer to the target pose after our refinement
and points lie closer to their corresponding epipolar lines,
showing that our geometric consistency refinement changes
the images such that they better align with the target pose.
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Figure 7. We show several examples of the distribution of the distances between points and their corresponding epipolar lines obtained
from the target poses and dense matches. While the images often appear similar, the refined images are more geometrically consistent
which we can see since the matching points are closer to the epipolar lines.

4.3. Ablation Studies

In Table 2 we show ablation studies for several key design
choices of our method, mainly for how to select matching
points. We use RoMa [5] which provides a match for all
pixels in the reference image along with per-pixel confi-
dence scores. We vary both how we select the matches and
the threshold at which we filter the matches. We tried using
all matches or to filter based on confidence scores as given
by RoMa and found that the results improved if uncertain
matches were removed. Furthermore we tested both to fix
the matches (in the reference image) after the first image
was generated as well as to update the points in the refer-
ence image used in the optimization for every iteration. We
found that fixing the position of the matches in the reference
image after the first image is generated and then keeping

those matches, regardless of whether the confidence of that
match increased or decreased, gave the best results.

5. Conclusions

We addressed the problem of geometric correctness for sin-
gle image NVS. Existing methods based on diffusion mod-
els generate realistic images, but they do not always depict
the scene from precisely the target poses. Our method im-
proves the geometric consistency by refining the generated
images from such models to better fulfill epipolar geome-
try. We evaluated our method on MegaScenes and showed
that with our refinement the images better align with the tar-
get poses. Our method is training-free and does not require
any fine-tuning or ground truth data, however it does require
test-time optimization for each generated image.
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